

TU/e EINDHOVEN UNIVERSITY OF TECHNOLOGY

The Netherlands

- delta region
- 50% below sea level
- polder integrity
 - sluices, weirs, embankments, canals
 - pumping stations (~5,000)

Need for fish protection

- pumping stations are hazards to fish
- European Parliament directive (2000/60/EC)
 - preservation of fish habitat
 - unobstructed migration of fish

Developments in the Netherlands

- monitoring of ~20 pumping stations since 2005
- establish relation fish damage versus pump type/size, flow rate, shaft speed, head, and fish type/size
- review of US studies on biological criteria for fish damage
- standards on fish damage assessment:
 - Dutch NEN 8775:2020
 - European EN 18110
- several new fish-friendly pumps and turbines

Developments in the Netherlands

- monitoring of ~20 pumping stations since 2005
- establish relation fish damage versus pump type/size, flow rate, shaft speed, head, and fish type/size
- review of US studies on biological criteria for fish damage
- standards on fish damage assessment:
 - Dutch NEN 8775:2020
 - European EN 18110
- several new fish-friendly pumps and turbines

Research program in USA

- Advanced Hydropower Turbine Systems program (AHTS) started in 1994
- strategy: study of biological criteria for injury and mortality
- research labs:
 - Pacific Northwest National Laboratory (PNNL)
 - Oak Ridge National Laboratory
 - Alden Research Laboratory
- primary injury mechanisms :
 - pressure changes
 - shear forces
 - mechanical: blade strike, grinding, entrapment

Pressure changes

- compression:no adverse effects
- decompression can lead to
 - rupture of swim bladder
 - haemorrhage
 - release of dissolved gas
- safe margin
 - physostomes can vent gases quickly
 p > 0.3 p_{accl}
 - physiclists require minutes/hours to diffuse gas into the blood
 p > 0.6 p_{accl}

physoclistes (Cada, Coutant, Whitney, 1997) perch, bass, bluegill sunfish, crappie

Shear forces

	Test Orientation	Strain Rate (cm/s/cm [\Delta y=1.8 cm])				
Test Fish		No Significant Injury	No Significant Major Injury	No Significant Deaths		
Fall chinook (age-0)	Headfirst	517	852	1008		
Fall chinook (age-1)	Headfirst	517	517	852		
Spring chinook	Headfirst	517	688	1008		
Rainbow trout	Headfirst	688	1008	1008		
Steelhead	Headfirst	517	1008	1008		
American shad	Headfirst	517	517	517		
Fall chinook (age-1)	Tailfirst	688	1008	1008		
Spring chinook	Tailfirst	688	1008	1008		
Steelhead	Tailfirst	852	1008	1008		
Rainbow trout	Headfirst w/ predators	517	NA	NA		

Safe margin:

$$\frac{dv_i}{dx_j} < 500/sec$$

(Neitzel, Richmond, Cada et al., 2000)

Blade strike

t= blade thickness

(Amaral, Hecker, Dixon, 2011) (van Esch & Spierts, 2014)

$$f_{MR} = \left[a \cdot ln\left(\frac{L_{fish}}{t}\right) + b\right](v_1 - 4.8)$$

correlation for mutilation ratio f_{MR}

NEN 8775:2020 / EN 18110:2025 standards

Assessment of fish damage in pumps and turbines:

- Tests with live fish
 - choice and origin of fish
 - transportation and storage
 - requirements set-up
 - preparing and conducting experiments
 - assessment of damage, sedation
 - number of fish, statistics, and accuracy
- Fish mortality model
 - blade strike mortality
 - low to moderate head values

Model for a pump (simplified)

$$t_{fish} = \frac{L_{fish}}{v_{ax}} = \frac{L_{fish}A_1}{Q}$$

$$t_{blade} = \frac{s}{v_{\theta}} = \frac{2\pi r/n}{N2\pi r/60} = \frac{60}{nN}$$

$$P_{co} = \frac{t_{fish}}{t_{blade}} = \frac{L_{fish}A_{1}nN}{60Q}$$

$$f_{MR} = \left[a \cdot ln\left(\frac{L_{fish}}{t}\right) + b\right](w - 4.8)$$

$$P_m = f_{MR} P_{co}$$

axial-flow pump ($N_s = 4.5$) conventional design

$$D = 2.80 m$$

 $N_{blade} = 4$ variable speed drive

Trout 25 cm

Model for a turbine (simplified)

$$w_{\theta} = \Omega r - \frac{v_r}{\tan \alpha}$$

$$t_{fish} = \frac{L_{fish} \sin \alpha}{v_r} = \frac{L_{fish} \sin \alpha 2\pi rB}{Q}$$

$$t_{blade} = \frac{s}{w_{\theta}} = \frac{2\pi r/n}{w_{\theta}}$$

$$P_{co} = \frac{t_{fish}}{t_{blade}}$$

$$f_{MR} = \left[a \cdot ln\left(\frac{L_{fish}}{t}\right) + b\right](w - 4.8)$$

$$P_{m} = f_{MR} P_{th}$$

Model validation

Flowserve
axial-flow, two-bladed pump
slanted leading edge

 $D_i = 56 cm$

Speed: 200-380 rpm

Head: 1.4 – 4.0 m

Model validation

Flowserve
axial-flow, two-bladed pump
slanted leading edge

 $D_i = 56 cm$

Speed: 200-380 rpm

Head: 1.4 – 4.0 m

Blade strike damage vs. specific speed

Pump and turbine selection:

- range of specific speed values N_s
 - low N_s: radial-flow type
 - medium N_s: mixed-flow/Francis type
 - high N_s: axial-flow/Kaplan type
- for same duty head and flow rate: $larger N_s \longrightarrow \underline{smaller size}$ and $\underline{higher speed}$
- for same duty and fish length:
 larger N_s → <u>higher strike probability</u>
 & <u>higher mutilation ratio</u>

Pump and turbine selection/design

- lower specific speed pump:
 - more fish friendly
 - larger size & lower speed, more expensive
- fewer blades
- leading edges with high slant angle
- thicker leading edges

conventional pump

fish-friendly pump

Pump and turbine selection/design

- lower specific speed pump:
 - more fish friendly
 - larger size & lower speed, more expensive
- fewer blades
- leading edges with high slant angle
- thicker leading edges

New pump designs

Bedford pumps

Pump and turbine selection/design

- lower specific speed pump:
 - more fish friendly
 - larger size & lower speed, more expensive
- fewer blades
- leading edges with high slant angle
- thicker leading edges

New pump designs

Flowserve

Pump and turbine selection/design

- lower specific speed pump:
 - more fish friendly
 - larger size & lower speed, more expensive
- fewer blades
- leading edges with high slant angle
- thicker leading edges

New turbine designs

Natel Energy

Fish damage in low head pumps

Pumping stations:

• mixed-flow: $ND_1 = 200-300 [rpm.m]$

• axial : ND₁ = 250-350 [rpm.m]

Decompression

 $60\% Q_{BEP}$ (van Esch, 2012)

Fish damage in low head pumps

Pumping stations:

mixed-flow: N = 100-200 [rpm]

• axial : N = 200-700 [rpm]

Velocity shear

 $60\%~Q_{BEP}$

Fish damage in low head turbines

 $D_{runner} = 4 m$ $N_{blade} = 3$ N = 88 rpm

Decompression

			acclir	acclimation		criteria for barotrauma	
		depth	pres	pressure		physostomes	
level		[m]	[m]	[kPa]	< 60%	< 30%	
water surface	20.85 m+NAP	0	10	100	60	30	
mid-level	12.6 m+NAP	8.25	18.25	182.5	109.5	54.75	
bottem	8.18 m+NAP	12.67	22.67	226.7	136.02	68.01	

Iso-pressure surfaces of 110 kPa

(van Berkel, van Esch, Vriese, 2014)

Fish damage in low head turbines

 $D_{runner} = 4 m$ $N_{blade} = 3$ N = 88 rpm

Velocity shear

Iso-vorticity 500 s⁻¹ (orange)

(van Berkel, van Esch, Vriese, 2014)

Blade strike damage vs. specific speed

$$K_{m1} = \frac{v_1}{\sqrt{2gH}}$$

$$P_{co} = \frac{t_{fish}}{t_{blade}} = \frac{L_{fish} \cdot nN}{60 K_{m1} \sqrt{2gH}} = f_P \frac{L_{fish}n}{\pi D_1} ; \qquad f_P = \frac{1}{2\sqrt{2}} \cdot \frac{D_1}{D_2} \cdot \frac{n_{\odot} \delta}{K_{m1}}$$

$$V_{s,1} = \sqrt{V_{m,1}^2 + V_{t,1}^2} = K_1 \sqrt{2gH}$$

$$K_1 = \sqrt{K_{m,1}^2 + K_{t,1}^2}$$
 ; $K_{t,1} = \frac{1}{2\sqrt{2}} \frac{D_1}{D_2} n_{\omega} \delta$ (van Esch, 2012)

TU/e